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LE'ITER TO THE EDITOR 

Potts model on finitely ramified fractals 

R Riera 
Department of Physics, Pontificia Universidade Cat6lica do Rio de Janeiro, 22453, Rio 
de Janeiro, Brazil 

Received 1 1  April 1985 

Abstract. We present an exact solution for the ferromagnetic q-state Potts model on a 
family of finitely ramified fractal lattices with fractal dimension between 1 and 2. We 
obtain the thermal exponent Y for the whole fractal family. The results stress the connection 
between geometrical parameters and critical behaviour, opening up new possibilities for 
modelling physical systems showing fractal structures. 

The interest in studying phenomena involving fractal structures (Mandelbrot 1977) 
has increased in recent years. For example, recent experimental works on kinetic 
gelation (Weitz and Oliveria 1984, Schaefer et a1 1984) and on two-dimensional growth 
of metal clusters (Matsushita et a1 1984) reveal that aggregates are well described by 
fractals with HausdorfI dimensions determined with high accuracy. Also, self-similar 
fractal structures (Mandelbrot 1977) have been found on percolation clusters (Leath 
and Reich 1978, Stanley 1977, Stauffer 1979, Pike and Stanley 1981, Gaunt and Sykes 
1983). Their full geometrical characterisation is important in understanding the thermal 
properties of random spin systems near the percolation threshold, through the behaviour 
of related spin systems on the backbone geometry of percolating clusters. In particular, 
one hopes that a systematic study of spin systems on fractal lattices will be useful in 
modelling the backbone. 

In this letter we study the Potts model on a family of self-similar fractals embedded 
in two-dimensional Euclidean space. These fractals have a finite order of ramification 
and provide intermediate geometries between the quasi-one-dimensional structure (e.g. 
Koch curves) and infinitely ramified fractals (e.g. Sierpinski carpets) (Mandelbrot 
1977). The geometrical properties of the fractals studied here have been discussed by 
Hilfer and Blumen (1984). They are obtained iteratively from generators G,, which, 
in turn, are built up from elementary triangular structures (see figure 1). We define 
the linear dimension of G,, as b = 3n - 1. 

The structure generated at each step of the iterative procedure is obtained by 
replacing all upward pointing triangles by a G,, structure. This procedure goes on 
indefinitely. The Sierpinski gasket is the special case n = 1 ( b  = 2). Figure 2 displays 
the n = 2 (b  = 5) case, after one step of the iterative procedure. 

An important geometrical parameter is the Hausdorff dimension. For the fractal 
generated by G,,, it is given by (Hilfer and Blumen 1984): 

dr = In N/ln b (1) 
where N is the number of small upward pointing triangles inside G,, and b is the 
linear dimension of G,, ; clearly one has 1 e d , c  2. 
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Figure 1. G, generators (a )  n = 1, ( b )  n = 2, ( c )  n = 3. 

Figure 2. Resulting structure after one step in the iterative construction of the fractal lattice 
generated by G,. 

At each site of the fractals defined above one attaches a spin ui, which can be in 
any of the q Potts states. The Potts Hamiltonian then reads (in units of 1/p = kBT): 

where (0) and ( i jk )  stand for first-neighbour pairs and basic triangles, respectively, 
after a microscopic scale is reached. 

Due to their finite order of ramification, spin systems on these lattices are exactly 
solvable. Generally the renormalisation group ( RG) equations are obtained from 
z n ( u A n f f B n u C n ) ,  the partial trace over all internal spins of G,,, keeping the spins on 
vertices A,,, €3, and C, at fixed states uAn, f f B n  and vcn respectively (see figures 3 ( a )  
and 3 ( b ) ) .  

The resulting RG transformations are of the form 

Z n  (aaP)/Zn (aaa) e-2J'-M' =zn(aPy>lzn(aaa) (3a9 b )  e - 2 ~ '  = 

where a, p, y denote different Potts states. 
The internal summation becomes cumbersome as b increases, but it can be 

performed recursively between consecutive generators G,,. Consider for example the 
generator G2. The summation of its internal configurations can be decoupled into 
independent sums over four graphs by keeping fixed the spins attached to their 
intersections (vertices Al, B1 and C, in figure 3 ( a ) ) .  The sum in the central graph is 



Letter to the Editor L797 

B1 A c 1  vA “ 2  

( U )  ( 6 )  ( C )  

Figure 3. Illustration of the summation of internal configurations in G2 through the 
decomposition into four graphs: sites with fixed spins are denoted by 0 (a)  Z2(uAzuB2ucz), 
( b )  Z i ( ~ A , ~ B l ~ ~ , ) ,  (c) S ( ~ v l ~ v z ) .  

just ZI(CTA,UB,~C,) (figure 3(b)) and the sums inside the other three graphs are called 
S(uv,avz), where uv, and uvl stand for fixed spins on vertices V, and V,, V =  A, B or 
C (see figure 3(c)). 

The result can be written as 

z,( ~ A Z u B 2 u c J  = zi ( u A l  u B , u c ,  S( CA, u A z )  S( uB, u B 2 )  S( ~ c ,  uc,) (4) 
U A ~  U C ,  

Equation (4) can be generalised for consecutive generators G, and G,+, as 

2, + 1 ( UA.+ VB ”+ I uc 1 
= C z, ( u A , ~ B , u c ,  IS( ~ A . ~ A , + , ) S ( ~ B . ~ B , + ~  )S( uc.uc,+,) .  ( 5 )  

UA,~B,~C, 

The finite order of ramification of the lattices implies T, = 0, a result that can be 
understood from entropy arguments (Gefen et a1 1984a). To obtain the low-temperature 
behaviour ( J ,  M >> 1) it is only necessary to calculate the energy of the lowest lying 
excitations. 

In the low-temperature limit, the dominant contributions to ( 5 )  are given by 

Z,+,( aaa) = Z,( aaa)S3( aa) + 3(q - l)Z,( aa/3)SZ(aa)S( aP) (6a) 

zn+,(aap) = zn(aaa ) s ’ ( a a ) s 2 ( a ~ )  + z n  ( P P P ) ~ ( ~ ~ ) ~ ’ ( P P )  + z n ( a a ~  )S3(aa)  

+ (9 -212, ( a a y ) ~ ’ (  aa )s( + 22, ( ~ P P )  S2( aa S( .P ) (66) 

(6c) 
Z,+,(apy) = 3Z,(aaa)S(aa)SZ(aP)+6Z,(aaP)S2(a~)S(aP)+Z,(aPr)S3(aa) 

where the permutation symmetry in S(uu’) = S(u’a) between Potts states was used. 
One has, to leading order in e-J and e-M 

Z,(  aaa ) = 1 + 3( q - 1) e-4J + 4( q - 1) e-6J (7a) 
Z,(aap) = e-” +4e-4J + 2( q - 2) (7b) 

z , ( a p y )  =3e-4J+6e-5J-M+(q+3) e-6J (7c) 

+ 3( q - 1) e-6J 

which reproduces the results of Gefen er a1 (1984a) for the Sierpinski gasket lattice, and 

~ ( a a )  = 1 + 2 ( q  - 1) e-” + ( q  - l ) ( q  +3) e-4J + 2 ( q  - l ) ( q  -2) e- (sa)  

(8b) 

5 J - M  

S ( a / 3 ) = e - 2 J + 2 ( q + 3 ) e - 4 J + 6 ( q - 2 ) e  - 5 J - M  . 
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Combining expressions (6), (7) and (8) we finally obtain 

Z,(aaa) = 1 +6(q - 1) e-”+3(q - l ) (q+5)  e-4J +6(q - l ) (q  -2) e (90) 

(96) 

~ , ( ~ p ~ )  = 12e-4J+6e-5J-M (9c) 

-51-M 

- 5 1 - M  Z,(acrp) = 2e-2J + (13q+ 1) e-4J + 8 ( q  -2) e 

Analogously, combining (6), (8) and (9): 

Z3(aaa) = 1 + 12(q - 1) e-’.’+6(q - l ) (q+ 5 )  e-4J + 12(q - l ) (q  -2) e5J-M ( loa )  

Z3( crap) = 3e-” + (39q - 14) e-4J + 14( q - 2) ( lob)  

Z , ( a p y )  = 27e-4J +6e-5J-M. (10c) 

Using (9), the RG equations (3) for the n = 2 fractal in the limit J, M >> 1, become 
- - 2e-” + a e-4J + 8(q - 2) 

e-3J’-M’ - - 12e-4J + 6e-5J-M 

with a = 2(q +3)+ 1O(q - 1)+ ( q  + 5). 

are rewritten, to second order in x and y, as 
Choosing x = e-” and y2 = e-3J-M as the low-temperature variables, equations (1 1) 

x’ = 2x + ax2 + 8( q - 2)xyz 

y’ = 2J5x + ; a y z .  

In the same way the RG equations (3) for the n = 3 fractal become 

x ’ = ~ x +  bX2+14(q-2)xyz (13a) 

y’=3\/5x+$3y2 (136) 

with b = 4(q +3)+32(q - 1) + 3 ( q  +2). 
By the recurrent formation of the coefficients of Zn(crAncrB,crCn) in (6), it is possible 

to write down the linearised RG equations in matrix form near the T = O  fixed point; 
for the lattice generated by G,, one has 

which yields eigenvalues n and 0 with eigenvectors (j3) and ( y ) ,  respectively. 

the eigenvalue A = n, the thermal scaling power yT is given by 
The variable y is then highly irrelevant, associated with a zero eigenvalue. From 

(15) yT= In n/ln(3n + 1). 

Table 1 shows the values of yT for several lattices. As the fractal dimension (1) 
decreases, the thermal exponent v = y;’ also decreases towards the limiting value v = 1 
as df approaches one. This monotonic decrease of the thermal exponent v with df 
differs from that of infinitely ramified fractals, where v increases when df decreases 
and which also depends on other geometrical parameters apart from the fractal 
dimensionality (Gefen er a1 1984b, %era and Chaves 1985). It would be very interesting 
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Table 1. Fractal dimension and thermal scaling power for several lattices generated by G,. 
b = 3 n - 1 ,  df=ln(9n-6)/ ln b and YT=Inn/ln b (see text). 

1 
2 
3 
4 
5 
8 

15 
30 

100 

1.585 
1.544 
1.464 
1.418 
1.388 
1.336 
1.277 
1.242 
1.192 

0 
0.43 1 
0.528 
0.578 
0.610 
0.663 
0.716 
0.757 
0.808 

if exact solutions were available for fractals with different degree of ramification, so 
that the influence of geometrical properties on the critical exponents could be assessed. 

For the lattices studied here, a universal behaviour between systems with different 
number of Potts states is obtained unlike the case of infinitely ramified fractal lattices 
(Riera and Chaves 1985). The possibility of universal behaviour must be investigated 
for other discrete spin models on finitely ramified fractals. 

The members with n # 1 of the fractal family studied here provide intermediate 
geometries between two models discussed in the literature for the backbone of the 
infinite percolation cluster at pc.  The first one is the Sierpinski gasket model which is 
formed by interconnected loops only and gives good results for the fractal dimensional- 
ity of the backbone at low dimensions (Gefen er al 1981) but fails to predict the thermal 
behaviour of dilute spin systems at the percolation threshold. On the other hand, while 
the nodes, links and blobs model (an alternate sequence of singly connected and 
multiconnected bonds) yields the exact thermal-geometrical crossover exponent for 
any dimension (Coniglio 1982), the dominant role of singly connected bonds in the 
thermal transition at p c  is not fully understood, at least for low dimensionalities. 

For the whole fractal family, the relevant geometrical feature in the determination 
of the thermal exponent is the presence of multiconnected links. Equation (15) relates 
v with the index n of the generator G, (this index can be associated with the number 
of G, vertices appearing in the G, structure). 

The n # 1 fractals also provide more reliable values for the exponent v than the 
Sierpinski gasket model for the backbone. Thus, one has greater flexibility in the 
choice of a fractal structure as a model for the percolating cluster. 

In summary, we presented an exact solution for the q-state Potts model on a family 
of finitely ramified lattices in which 1 < d,< 2. For each lattice, the critical behaviour 
was the same irrespective of the number of Potts states, in contrast to the results for 
infinitely ramified lattices. For the n = 1 fractal lattice, the results of Gefen et a1 (1984a) 
for the Potts model on the Sierpinski gasket were reproduced. The solutions for the 
n # 1 members of the family differ qualitatively from the Sierpinski gasket in the 
non-marginal character of the temperature. These results contribute to a more general 
view of the influence of geometrical mechanisms on critical behaviour, offering new 
possibilities to model general clustering properties of spin systems. 

I should thank Dr R R dos Santos for a critical reading of the manuscript. 
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